Looking Through: Mapping Air

Cassini's Composite Infrared Spectrometer

Stephen J. Edberg

Cassini Program

October 29, 1999

The Cassini Spacecraft in the Solar Thermal Vacuum Chamber

Cassini Orbital Tour at Saturn

Titan Northern Hemisphere

Titan Haze

Very Large Array

CIRS
Instrument
on
Cassini
Remote
Sensing
Pallet

Spectrum of Sirius

CIRS

Description of Investigation

- Infrared Spectroscopy of Emission from Atmospheres, Rings, and Surfaces in
 - 10 1400 cm⁻¹ (1000 7 micron) Region
- Global Mapping in Saturn's and Titan's Atmospheres of The Three Dimensional and Temporal Variation of:
 - Temperatures
 - Gas Composition
 - Aerosols, Clouds
- Global Mapping of Saturn's Rings and Icy Satellite Surfaces for:
 - Composition and Thermal Properties
- Nadir and Limb Observational Modes. Limb Scanning Provides Scale Height Altitude Resolution.

CIRS Measurement Capabilities Science Objectives

Saturn, Titan Atmospheres

Map Global Thermal Structure	Dynamics, General Circulation	
Map Global Gas Composition	Photochem, Dynamics, Evolution	
Map Global Information on Hazes & Clouds	Haze Formation, Cloud Physics	
Determine Information on Non-equilib Processes Energetics		
Search for New Molecular Species	Photochemistry, Evolution	

Titan Surface

Map/Global Surface Temperature	Lower Atmosphere Dynamics
--------------------------------	---------------------------

Rings and Icy Satellites

Map Composition Thermal Characteristics	Origin, Evolution, and Process
Map Thermal Characteristics	

CIRS Improvements Over Voyager IRIS

- Increased Altitude Resolution With Limb Sounding (3 → 1H_T)
- Increased Sensitivity In Mid-IR
- Extended Spectral Coverage To Far-IR (10-200 cm⁻¹)
- Extended Spatial And Seasonal Coverage

CIRS Top-Level Science Requirements

- Spectral Range: 1000 microns To 7.14 microns
 - Band 1 (FP1): 1000 16.7 microns (10 600 cm⁻¹)
 - Band 2 (FP3): 16.7 9.1 microns (600 1100 cm⁻¹)
 - Band 3 (FP4): 9.1 7.1 microns (1100 1400 cm⁻¹)
- Spectral Resolution: 0.5-20 cm⁻¹, Commandable
- Fields Of View (Geometric, Centered Between FP3 & FP4, Nonoverlapping)
 - FP1: 4.3 mrad (Circular)
 - FP3: 2.88 x 0.273 mrad (1 x 10 Array), 0.273 x 0.273 mrad Pixels
 - FP4: 2.88 x 0.273 mrad (1 x 10 Array), 0.273 x 0.273 mrad Pixels

CIRS Instrument Concept

- The <u>Composite Infrared Spectrometer (CIRS)</u> Consists Of Combined Far-IR And Mid-IR Fourier Transform Spectrometers.
- The <u>Two Spectrometers</u> Share a 50 cm, F/6 Telescope and Mirror Transport Mechanism.
- Overall <u>Spectral Coverage</u> Is 10 to 1400 cm⁻¹ (1000-7 microns) and <u>Spectral</u> Resolution is 0.5 to 20 cm ⁻¹.
- The <u>Far-IR Spectrometer</u> is a Polarizing Interferometer with a Single Focal Plane (FP1):
 - FP1: 10 600 cm⁻¹, Two Thermopile Detectors
 4.3 mrad Field-of-view.
 - FP3: 600 1100 cm⁻¹, 1 x 10 HgCdTe Array
 0.273 mrad Field-of-View on Each Pixel.
 - FP4: 1100 1400 cm⁻¹, 1 x 10 HgCdTe Array
 0.273 mrad Field-of-View on Each Pixel.

Pixels on Each Array are Selectable in Sets of 5 Output Channels.

CIRS INSTRUMENT SUMMARY

Telescope Diameter (cm) 50.8

Interferometers: FIR MIR

Type: POLARIZING MICHELSON

Spectral Range (cm⁻¹) 10-600 600-1400

Spectral Resolution (cm⁻¹) 0.5-20 0.5-20

Integration Time (sec) 50-2 50-2

Focal Planes: FP1 FP3 FP4

Spectral Range (cm⁻¹) 10-600 600-110 1100-11400

Detectors: Thermopile HgCdTe HgCdTe (2) (1x10) (1x10)

Pixel FOV (mrad) 4.3 0.273 0.273

Operating Temperature (K) 170 70,75,80,85 70,75,80,85

(Stability +/- 0.1 K)

MICHELSON INTERFEROMETER

CIRS INSTRUMENT LAYOUT

CIRS CONCEPTUAL LAYOUT

CIRS FIELDS OF VIEW (FOV)

CASSINI OPTICAL REMOTE SENSING FIELDS OF VIEW

PROJECTION ON SKY (ALONG -Y AXIS)

Composition of Interferogram

CIRS VIEWING GEOMETRY

TITAN SYNTHETIC NADIR SPECTRUM

TITAN SYNTHETIC NADIR SPECTRUM FOCAL PLANE 3

TITAN SYNTHETIC NADIR SPECTRUM FOCAL PLANE 4

CIRS FOCAL PLANE 3, 4 LIMB COVERAGE

CIRS EXPECTED PERFORMANCE: TITAN LIMB VIEWING

CIRS FOCAL PLANE 1

CIRS FOCAL PLANE 3, FOCAL PLANE 4

Diurnal Temperatures

CIRS Instrument Web Sites

http://www701.gsfc.nasa.gov/cirs/inst.htm

http://www.jpl.nasa.gov/cassini/Science/MAPS/CIRS.html

The future in Physics Software

This CD ROM helps students understand some of the most difficult topics such as diffraction and interference and they enjoy using it too. " Charlie Burton - Carmel College.

Here are numerous software models ' to die for ' that show Doppler effect, damping ... A' Level Physics teachers will want to use these as demonstrations or class activities. The title offers something of a breakthrough in allowing you to get straight to the part you need without the usual garnish or multimedia frills." T.E.S Online 12th March 1999

Download a Windows 95/98/NT or Macintosh Trial version of Oscillations and Waves

Oscillations and Waves proved itself to be a big favorite with physics teachers at the BETT'99 exhibition in Olympia. Feedback from teachers indicates that our balance of clarity of design, a high level of interactivity and challenging tasks, notes and solutions is a recipe for success.

http://www.fable.co.uk/index.htm

